Comment on "Option pricing under the Merton model of the short rate" by Kung and Lee [Mathematics and Computers in Simulation 80 (2009) 378-386]
نویسندگان
چکیده
This is a short comment on Kung and Lee’s paper. In this note, we show that the formulae given in Kung and Lee(2009) for European call and put option under Merton’s model of the short rate are incorrect. We give the correct derivations making use of the ”change of numeraire” technique which is simpler and more standard. Key-words: Stochastic Interest rates, Change of Numeraire, Call option price, Merton short rate model
منابع مشابه
Option pricing under the Merton model of the short rate
Previous option pricing research typically assumes that the risk-free rate or the short rate is constant during the life of the option. In this study, we incorporate the stochastic nature of the short rate in our option valuation model and derive explicit formulas for European call and put options on a stock when the short rate follows the Merton model. Using our option model as a benchmark, ou...
متن کاملOption Pricing on Commodity Prices Using Jump Diffusion Models
In this paper, we aim at developing a model for option pricing to reduce the risks associated with Ethiopian commodity prices fluctuations. We used the daily closed Unwashed Lekempti grade 5 (ULK5) coffee and Whitish Wollega Sesame Seed Grade3 (WWSS3) prices obtained from Ethiopia commodity exchange (ECX) market to analyse the prices fluctuations.The natures of log-returns of the prices exhibit a...
متن کاملOption pricing under the double stochastic volatility with double jump model
In this paper, we deal with the pricing of power options when the dynamics of the risky underling asset follows the double stochastic volatility with double jump model. We prove efficiency of our considered model by fast Fourier transform method, Monte Carlo simulation and numerical results using power call options i.e. Monte Carlo simulation and numerical results show that the fast Fourier tra...
متن کاملOption Pricing in the Presence of Operational Risk
In this paper we distinguish between operational risks depending on whether the operational risk naturally arises in the context of model risk. As the pricing model exposes itself to operational errors whenever it updates and improves its investment model and other related parameters. In this case, it is no longer optimal to implement the best model. Generally, an option is exercised in a jump-...
متن کاملNumerical algorithm for discrete barrier option pricing in a Black-Scholes model with stationary process
In this article, we propose a numerical algorithm for computing price of discrete single and double barrier option under the emph{Black-Scholes} model. In virtue of some general transformations, the partial differential equations of option pricing in different monitoring dates are converted into simple diffusion equations. The present method is fast compared to alterna...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Mathematics and Computers in Simulation
دوره 81 شماره
صفحات -
تاریخ انتشار 2010